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Summary an "average" alloy particle and so that the interactions with
neighboring alloy particles would be redefined accordingly.

Equivalent crystal theory (ECT) is a new semiempirical However, to apply ECT directly, a priori knowledge is
approach to calculating the energetics of solids with defects, required of the structure and properties of that alloy with the
The theory has successfully reproduced surface energies in lowest possible cohesive energy, which is clearly impossible
metals and semiconductors. The theory of binary alloys, both as in most cases it is one of the pure components, and not the
with first-principle and semiempirical models, todate has not alloy, that is sufficientlywell known. The values of the binding
been extremely successful in predicting the energetics of energy and cohesive energies are the same at the minimum
alloys. This paper presentsan extensionof ECT, which is used in the binding energy curve when it is referenced to zero at •
to predict the heats of formation, cohesive energies, and lattice infinite separation.
parameters of binary alloys of Cu, Ni, Ai, Ag, Au, Pd, and In deriving an alternative approach to an exact treatment
Pt as functions of composition. This procedure accurately of alloys (that, if satisfied, would allow for a simple and
reproduces the heats of formation versus composition curves efficient study of alloys and defects), we face two constraints:
for a variety of binary alloys. The results are then compared (1) We must keep a single-species description, thus allowing
with other approaches, such as the embedded atom method us to treat individual atoms as building blocks of any metallic
or Miedema's method. In addition, a new sum rule, which compound, and (2) we must be able to introducespecific alloy
predicts the cohesive energies and lattice parameters of alloys properties in a perturbative fashion to properly account for
from pure metalproperties more accurately than Vegard's law, the behavior of multicomponent systems. Further, in order
is presented, to retain the simplicity and numerical accuracy of the original

ECT, we chose to base our approach on it.
In the original ECT, each atom ina defect crystal is assigned

Introduction an equivalent crystal of the same atomic species. The lattice
parameter of this equivalent crystal is determined such that

The equivalent crystal theory (ECT) (refs. 1to 3), recently the energy of an atom in the equivalent crystal is the same
extended to include a proper treatment of bond length as the energy of the atom in the defect crystal. The lattice
anisotropy and bond angle anisotropy (ref. 4), is still limited parameter of the equivalent crystal is obtained via a per-
in its inability to treat systems with more than one atomic turbative scheme which translates into solving a simple
species. The basic idea underlying this theory, that is, the transcendental equation containing information about the
existence of an equivalent, fictitious crystal for each atom nature of the defect. Once the equivalent lattice parameter is
encompassing the range of a certain local defect, is not appli- determined, the energy is computed by means of the universal
cable to alloys, since the onlydifference betweenthis fictitious binding energy relation. This energy is actually the difference
singlecrystal and the actualground statecrystal is that its lattice in the energy of the atom in the defect crystal and that in the
constant differs from its ground state value. Thus, nothing in atom in the ground state crystal.
ECT accounts for a variety of atomic species in the local In an alloy, however, an atom of a given species finds itself
environment. In other words, an alloy cannot be considered in a different environment from the one in the ground-state
as a defect of an otherwise pure crystal (i.e., a crystal of one pure crystal of its own species: the geometry is different, and
atomic species), some of the neighboringatoms are of a different species. These

Retaining the atomic identity of the constituents is essential two changes should be dealt with separately, as they cannot
in developing a technique for calculating alloy properties, both be considered defects. Within the framework of ECT,
Without atomic identity, detailed knowledge of the particular a defect is any change of the local environment of the pure
alloy properties we wish to predict would be required. Such crystal where nothing is necessarily conserved, except the
particularity would limit the range of applicability of any identity of the atoms. The equivalent crystal of any given atom
method attempting to deal with multicomponent systems. To in the defect crystal is a compressed or expanded version of
use the current version of ECT for alloys, it would be the ground-statepure crystal. In this sense, then, the formation
necessary to redefine the system, its components, and the of an alloy A-B cannot be considered as a "defect A" or
formal perturbative series so that each atom would become "defect B" crystal.



The basic difference between the changes in geometry Q arbitrary point on the binding energy curve of
related to alloy formation (with reference to pure single a certain crystal

crystals) and the composition effects, forces us to establish Rt (R2) nearest (next-nearest) neighbor distance in the
a procedure that will treat each aspect separately, perfect crystal (eq. (13))

We now formulate a technique that maintains the simplicity r lattice parameter
of ECT and uses pure metal properties to calculate alloy
properties. This procedure is then tested by comparing its rj distance between jth neighbor and atom under
predictions with experimental data, first-principles calcula- consideration
tions, and other semiempirical and empirically based methods, rwse equilibrium value of Wigner-Seitz radius

In the section on equivalent crystal theory we briefly review x arbitrary concentration
the fundamental ideas of the equivalent crystal theory for pure

c_ parameter thatwill primarily reflectthe structure
metals. In the section "Formalism" a detailed description of

of the electron density in the overlap region,
the new formalism is given. The following two sections give parameter computed by requiring agreementthe results and an extended discussion which includes

with the experimental vacancy formation
comparisonswithothermethods. energy

AAB , ABA perturbative parameters

Symbols energyreference

a equilibrium lattice constant, A h electronic screening length

a,. equilibrium lattice constant vn(r) many-body interaction potentials

B equilibrium bulk modulus, GPa _ multisite correlation functions defined on an
n th order cluster

cl (c2) ratio between nearest (next-nearest) neighbor
distance and the lattice parameter

E energy Subscripts:

EBA,EAB heats of solution of impurity in host A metal A

E,. cohesive energy, eV AB impurity A in host B

AE,. minimum total energy, i.e., the equilibrium B metal B
binding energy, eV BA impurity B in host A

AEo(r,x) excess internal energy for disordered alloys m indicates ordered alloys

Era(r) binding energy of ordered alloy v virtual crystal

AE,,,(r,,,) excess internal energy for ordered alloys x indicates disordered alloys

Eo,,(r),E_(r) binding energy curve for (dis)orderedcompound

e,." chemical energy (eq. (9)) Superscripts:

es strain energy A metal A

AH heat of formation, the difference in energy AB impurity A in host B
between the constituentatomsof thecompound B metal B

at equilibrium and their composition-averaged BA impurity B in host A
bulk values in the pure crystals

j identity of the neighbor of atom i located at a

distance ry from the host atom Equivalent Crystal Theory of Metal
1 screening length, = (Ec/12rBrw_e)I/2, A and Semiconductors
IA scaling length

N (M) nearest (next-nearest) neighbors The equivalent crystal theory (ref. 4) is a new tool for the

Ni (N2) number of nearest and next nearest neighbors in treatment of real material defects at the atomic level. The
a perfect (equivalent) crystal method treats surface energies and the surface relaxation of

semiconductors and metals accurately. The basic idea of this
n principal atomic quantum number method is that, for any crystal with a defect, an atom in the
P(x) interpolating polynomial for heat of formation vicinity of the defect has the same energy that it would have

of disordered alloys in a certain perfect (equivalent) crystal, which we define later.
p = 2n - 2 The defect crystal can be formally described as a perturbation
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Figure l.--Scaled binding energy per atom of a crystal as function of inter- Figure 2.--Scaled binding energy versus scaled separation for representative
atomic separation for representative solids. The sources for unscaled results cases of cohesion, bimetallic adhesion, chemisorption, and diatomlc
are listed in ref. 12. molecule. Sources of unscaled results are listed in ref. 12.

of a perfect crystal whose lattice parameter is chosen to analytic form accurately represents the universal energy
minimize the perturbation, relation:

The procedure is very simple, and for each atom near a
defect, it involves solving a few transcendental equations that E'(a') = - (1 + a') exp - a ° (3)
represent the perturbation between the real defect crystal and
the perturbed, equivalent crystal. The number of equations From the point of view of an individual atom in a certain
depends on the complexity of the defect. The solution of these crystal, each point of the binding energy curve can be
equations gives the lattice parameter of the equivalent crystal, interpreted in two different ways. To fix ideas, let's consider
In a straightforward calculation, each atom is then assigned an arbitrary Point Q on the binding energy curve of a certain
its own equivalent crystal whose energetics followa universal crystal (fig. 3):
behavior given by the universal binding energy relation.

Total energies as a function of interatomic spacings have
been discovered to have a single, universal form for bimetallic
adhesion, for cohesion in metals (fig. 1), for metallic and
covalentbonds in chemisorption, for many diatomicmolecules ao ao
(fig. 2), and even for nuclear matter. All these curves are

scaled on to one universal form, which can be obtained by
a simple scaling of the total energy:

E(a) = EcE'(a') (l)

where --Eo O

• a -- ae
a - (2)

1

and where Ec is the minimum value of the total energy, that
is, the equilibrium binding energy, and 1 is a conveniently
defined scaling length. As shown in figures I and 2, a simple Figure3.--AnypointQonbindingenergy curve.



Point Q then denotes (1) the energy EQof the atom when the E,. is the cohesive energy, and eI is the ratio between the
perfect crystal is uniformly expanded until its lattice constant equilibrium Wigner-Seitzradiusand the latticeparameter. This
has the value aQ, and (2) the energy EQ of the atom in a procedure is performed for each atom that defines the defect
defect crystal, but where the defect is such that its equivalent and the sum of these energies represents the energy of forming
crystal has the same lattice constant aa. In the process of the defect.
creating the defect, that particular atom increased its energy A complete formulationof ECT canbe found in reference 4,
by an amount where additional terms dealing with bond length anisotropy,

bond angle anisotropy, and face diagonal anisotropy are
fiE = E,. - Eq (4) included. Including these terms does not change the essence

of the method, which is basedon the existence of an equivalent
The sum of similar contributions from the other atoms crystal for which the brief summary included here suffices.
surrounding the defect amounts to the total energy necessary For simplicity, we will not refer to these terms when dealing
to create the defect, with the extension of ECT to alloys, but it must be understood

In order to determine the equivalent lattice constant aQ, we that in any practical application, a full ECT treatment of the
solve a simple transcendental equation where the only input defect should be carried out following the prescription in
is given by the atomic positions of the surrounding neighbors, reference 4.
thus carrying all the relevant information about the nature of
the defect. This equation, which in what follows will be
referred to as the ECT perturbation equation, results from a Formalism
simple parameterization of an exact perturbative treatment of
the problem: General Considerations

In order to fix these ideas, we will describe the ensuing
formalism with reference to the following example. Consider

Nl(ClaQ) p exp (--c_cl,ao) + N2(e2aQ)p two pure single crystals: one of atomic species A (lattice
parameter a_) and one of atomic species B (lattice parameter
a,,). This will be the initial state. The final state will be a

exp o_+ c2aQ = _ rj exp-- [or+ S(rj)]Rj (5) certain alloy AB with lattice parameter ax. The ideal process
J of alloy formation is shown in figure 4.

Let us focus on one of the atoms in the A crystal. Figure 5
with represents the transformation undergone by this atom. There

is a change in geometry (the lattice parameter changed from

___( [Tr(rj a,,)]'_ A
S(rj) I 1 - cl (6) ae to ax) and a change in composition (some of the neighbors

= - cos [ (c2 - cl )a,,j// are changedto B atoms, denoted by dots). As discussedabove,we will break up this transformation into two independent
transformations, as shown in figure 6.

where rj stands for the distance between thej thneighbor and In the first transformation, the identity of the atoms is
the atom under consideration; N l and Nz are the number of conserved. The atom in question (denoted in figs. 5 and 6
nearest and next-nearest neighbors in a perfect (equivalent) by ®) sees its environment changed only in terms of the
crystal; p = 2n - 2, where n is the principal atomic quantum relative distances of the atoms surrounding it. This is a defect
number; h is the electronic screening length; _ is a parameter that can be straightforwardly treated with the current ECT
computedby requiringagreementwith the experimentalvacancy
formation energy; and cl (c2) is the ratio between the nearest A
(next-nearest)neighbor distanceand the lattice parameter. The

sum on the right side of equation (5) is over the neighbors aoA × ×
of the atom in the defect crystal. Once equation (5) is solved X
with respect to the equivalent lattice constant aa, the change × × _ A-B
inenergy is found from the universal binding energy relation: × ×

ax •

E = E,.[1 - (1 + aa) exp (--aQ)] (7) _ • ×
B

where aB •

ao -- cl (aQ -- a,,)
l Figure 4.--Ideal process of alloy formation.



A A-B where

aAe X X X X __ A
_) _ ax (_) aE a,,

X X • • a*A-- IA

Sn = + 1 if a,] > 0, Sa= - 1 ifa_ < 0, and aE is obtained
Figure5.--Transformation of atom A in crystal, by solving a transcendental equation that will be discussed

, later.
A A The last term in equation (9) is introduced to compensate

for the fact that the chemical energy, as defined here, is

a_ x x X X independent of the structure of the crystal. Without it, thea x
_) _ _) chemical energy would be a constant, solely dependent on

X X X X chemical composition, regardless of the relative positions of
the atoms. It will be shown later that we must includethis term

in order to properly account for the asymptotic behavior of
the enthalpies of formation of alloys. However, it will also
be shown that for the description of equilibrium properties of

A A-B the alloys, there is a certain arbitrariness concerning the
definition of this term as well as its need altogether.

aeA X X X X
_) _ ae _) Strain EnergyX X • •

The calculation of the strain energy is straightforward, as
it only requires the knowledgeof the location of the occupied
sites surrounding the atom being studied. The first step

Figure 6.--Breakup of transformation shown in figure 5 into two independent involves solving the ECT perturbation equation for that atom

transformations, in order to determine the equivalent lattice parameter a:

withoutrefereneetoaUoy formation. The atom suffers a [ (_) ]
change in energy, e_, which we will call from now on strain NRq exp (-erR I) + MR_ exp - ot + R 2
energy, because it is related only to lattice deformations. The
change in energy is simply

= E r'pexp [- (e_+ S(r,) )ri] (10)
e_a = E_[I - (1 + a_) exp (-a_)] (8) i

where where

• a-a A 1 ( [Tr(r-R_')]_as = --_A S(r) =_ 1-cos {-R7 R--_-J/ (11)

and where a is the lattice parameter of the equivalent crystal for
of the atom in question, which can be easily obtained by
applying single-crystal ECT. The parameters Eac,aea,and IA R_' = clae and Rg = c2ae (12)
are the cohesive energy, equilibrium lattice parameter, and
scaling length, respectively, where ri is the distance between the i th neighbor and the atom

In the second transformation, the geometry of the equilib- under consideration and N (M) is the number of (next) nearest
rium crystal is conserved. The atom in question sees its neighbors in the perfect crystal. Also,
environment changed only in terms of the identity of its

neighbors. This change in energy, which we call the chemical R= = cla and R2 = c2a (13)
energy, is given by

where c= (c2) is such that RI (R2)is the (next) nearest
eA = saE_[l -- (1 + a_) exp (--a_)] exp (--a_) (9) neighbor distance in the perfect crystal. Once the equivalent



lattice parameter a is known, the strain energy is easily a homogeneous crystal where its constituents are quasiatoms
computed using equation (8). that properly model the chemical composition of the impure

crystal, then any alteration in the compositioncould be studied

Chemical Energy by recourse to a single set of equivalent crystals of the
quasiatoms. This requires the a priori knowledge of the

In the single-crystal ECT, where all the atoms are of the properties of this quasicrystal; however, these are the
same atomic species, we apply perturbation theory in order properties that we wish to predict. Further, the quasiatom
to find the energy of the defect crystal. The perturbation is approach makes the calculationof the energeticsof an arbitrary
basically due to the difference in potentialsbetween the defect defect, both in composition and geometry, impractical.
solid and the ground-state crystal. As described in the original Therefore, we are attempting to develop a methodthat retains
formulation of the method, it is reasonable to parameterize the simplicity of the original ECT, where the identity of the
the first-order contributions to the perturbation expansion as individual constituents is maintained. We must, then, work

with the frameworkof single crystals, where an atom of certain
AE o_Rp exp( - o_R) (14) species is only "allowed" to have equivalent crystals of its

own species, whether it is a pure environment of atoms of the
where p = 2n - 2 (where n is the atom principal quantum same element or not.
number) and a is a parameter that will primarily reflect the To distinguish the type of equivalentcrystals one determines
structure of the electrondensity in the overlapregion. In single- when computing strain energies, we will call these new,
crystal ECT the parameter ot is determined for metals so that approximate equivalent crystals, which represent solely the
the energy to form a rigid (or unrelaxed) vacancy is equal to changes in atomic compositions, "virtual crystals." We must,
the experimental value, of course, remember that that they are just a tool to help us

To a good approximation, these concepts should remain approximatethe "jump" into the otherwise inaccessiblefamily
valid in the case of alloys, and we will adopt the same func- of curves of the real equivalent crystals of the previously
tional form used in equation (6) to describe the perturbation defined quasiatoms.
due to the dissimilar atomic species. In order to deal with In order to compute the net change in chemical energy
arbitrary defects and structures in future applications, as well (lee[)in such a transformation (see fig. 6(b)), we first find the
as withmulticomponentsystems, it is convenientto "localize" virtual crystal of the atom under consideration, where the
this effect and assume that the global property parameterized defect crystal is the equilibrium crystal whose constituentsare
by e_(i.e., the tails of the overlapping electron densities) can a mixture of atoms of different species.
be separated into pairs of interacting atoms. In this approxi- As an example, let us consider an atom of species A which,
mation, the electron density in the region between two atoms in its reference state, would be located in a lattice site with
of the same species would be unaffected by the presence of N (M) nearest (nex(-nearest) neighbors. The change in
neighboring atoms of a different species. The perturbation composition to that of the alloy can be represented as the
would then be localized in the region between two dissimilar flipping of some of the surrounding A atoms into B, C .....
atoms. This assumption enables us to define the parameter etc., atoms. When writing the ECT perturbation equation for
o_A8as the host atom, we distinguish each interaction by means of

the coefficients OtAj(]= B,C.... ), such that
OIAB = OtA + ABA (15)

whereoA,sva,uepurem:,a'Aan '" Aisacorrection introduced by the presence of a neighbor of NR_Aexp (--C_AR_)+ MRpAexp - otA+ R2
species B. The use of OtA8in the ECT will be described later.
Obviously, AAB= 0 if A = B.

The "perturbation" parameters AA8and ABAare the only
new parameters introduced in this theory of alloys, and they = E rpAexp - [_Aj+ S(ri)]ri (16)J
will be determined by fitting to appropriate experimental data.

The main ingredient in the calculation of ec (see eq. (9)) for
is aE, the equivalent lattice parameter for the atom embedded

in the alloy. As noted earlier, the concept of defect, as defined RI = claE and R2 = c2aE
in the ECT framework, is not applicable in this case: even
when asingle impurity is introduced in an otherwise perfect
crystal, every single neighboring host atom has access to a wherej denotes the identity of the neighbor of atom i located
range of atomic states that cannot necessarily be reproduced at a distance rj of the host atom and where

by an equivalent perfect crystal of a single species. If we were ,4 (17)
able to map the perfect crystal with the single impurity onto ri o_ae



Once aEis known, the net change in energy is obtained by A AV

means oftheuniversalexpression: aA (_) × .......___..,_aA I_) X× o
ea,.=s,E_'[1 -(1 +aa) exp(- aA)] exp(-- a_) (18) × × × ×

where

,4 Figure 7.--Perfect crystal A undergoing ideal transformation.

OA- aE -- ae
Io

with s,4= + 1 if a_ > 0 and s,4= - 1 if a_ < 0, where a,A,is
the equilibrium lattice parameter of a pure A crystal.

The origin of the sign SA,which obviously accounts for the A
direction of the energy change in the alloy, can be explained Av

with reference to a simple model of vacancy formation, as a_ _ × . _ X
follows: Consider a perfect A crystal which undergoesan ideal X _ a°A o
transformation where a vacancy is created without relaxation X X Real X X
of the atomic positions of the neighboring atoms. This ideal crystal
process is shown in figure 7, where the circle denotes the
vacancy site and where x denotes one of its nearest neighbors.

Each ® atom increases its energy by an amount ev,which

can be easily computed with ECT. The equivalent crystal of A AVeq
each ® atom (lattice parameter a,,), is then an expanded X X
version of the ground-state crystal (lattice parameter a_). X ×

This process, in terms of equivalent crystals, is shown in aA _) Equivalent_ (_)
figure 8. The ideal process of creating a vacancy can be X X crystal
interpreted as the uniform expansion of the corresponding av X X
equivalent crystals of each one of the neighboring atoms. And
the total change in energy of the defect crystal is just the sum
of the energies involved in each one of these expansions.

Consider now a second, ideal, process, which is just the Figure&--Ideal process of fillinga vacancy.

reverse of the process described before; that is, the vacancy
is now filled, returning the defect crystal to its original state
(as shown in fig. 9).

Regardless of the intermediate states reached during this

process, the net result is the lowering of the energy of the (1) (2) (13)
system to its original value. In terms of equivalent crystals, A Av A

the equivalent crystal of each neighboringatom of the vacancy I
undergoes a uniform compression until the lattice parameter (_ X (_) X (_ XI X _ 0 _ X
of the equivalentcrystal exactly coincideswith the equilibrium X X X X
lattice parameter. If we focus our attention on the initial and aA aoA aoA × ×

final states ((1) and (3) in fig. 9), there is no net change in Realcrystal
the equivalent lattice parameter, which amounts to no net
change in the energy of the crystal. The process of filling the
vacancy, then, is a processthat lowers the energy by an amount (1) (2) (13)
proportional to the reduction in the equivalent lattice Aeq Aeq

parameter. If it reduces to the equilibrium value, the net change AVq X X

szero °lxx  lxxAs noted before, no exact statement can be made (in terms (_ --_ @ (_
of equivalent crystals) with respect to a similar process where X X × X
the vacancy is filled withan impurity atom, as shown in figure a av X X
10. The equivalent crystal of ® in the final state (3) can be Equivalent crystal
taken just as an approximation to the real final state (upper
line in fig. 10).The processof filling the vacancywithan atom Figure 9.--Reverse of the process in figure 8.



A Av Ai The heat of formation AH is defined as the difference in

Aol ](_ × (_) × (_ × energybetweentheconstituentatomsofthecompoundat

× _.__,,. o _ • equilibrium and their composition-averagedbulk values in the

× × aoA X × a_ X × pure crystals. Later in this section, we will provide ana algorithm for the calculation of AH.

Realcrystal Equations (19) and (20) form a system of two coupled
equations that are solved with respect to AABand ABA.
Consider a binary alloy A-B on a lattice of fixed symmetry.
We first compute the excess internal energy AE for some

Aei AVq X X Aieqtl_, ordered alloys in reference to its phase separation limit. For

a .... _'_ the ordered structures, we first consider the case of a face-
X X centered-cubic (fcc) lattice. If we assume that only clusters

e _ consisting entirely of nearest neighbors are important, then
X X

aeA av X X aE we only deal with structures of the form AmB4_m(where thelargest cluster of nearest neighbors is a tetrahedron as shown

Equivalentcrystal in fig. 11).
These clusters are the building blocks of the corresponding

Figure 10.--Ideal process where vacancy is filled with impurity atom. ordered fcc alloys AmBn_m(see fig. 12). The excess internal
energy for the ordered alloy per atom is written as

(of the species of the host or any other atomic species) is then

a process which lowers the energy of the original crystal. If AEm(r)=Em(r) m ( 4)the lattice parameter of the equivalent crystal is greater than - 4 E4(a_) - 1 - Eo(a,q) (21)
the equilibrium value, the net change is still positive, but, if
it is smaller than the equilibrium value, the net change is then Aand Bwhere ae ae are the equilibrium lattice constants of pure
negative. Again, this is only an approximation, and its validity A and B metals, and Eo(aeB) and E4(aeA) are the cohesive
will be tested by several applications of the method.

Finally, the last term in the chemical energy equation, e-"; energies EB and E_, respectively. With these definitions,Era(r) represents the binding energy curve of the ordered
(see eq. (9)), is introduced to compensate for the information alloy.
lost when breaking up the process of formation of the alloy
from its pure constituents into two independent processes (as
shown in fig. 6). This term is proportional to the lattice param-

etrmismtcofteconttuentsXsmanroenot
earlier, is to properly account for the asymptotic behavior of
the excess energy in the formation of the alloy from its
constituents, but it is almost of no relevance in the region of
interest (when the typical distances in the alloy are comparable
to the distances in the equilibrium metals).

B A

Determining AAB and ABA rn = 0 rn= 2 m= 4
B AB A

In order to fix the perturbative parameters A, we will use (fee) (L10) fee
the experimental values for the heat of solution (in the dilute
limit). Let's call ERAthe heat of solution of an impurity B in

aost ThisanttyiseeS xo9where AH is the heat of formation of the compound Al-xBx,
x being the concentration of B atoms. Correspondingly, m=l m=3

AB3 AaB
dAH [ (L12) (L12)EA8 I (20)
-_ x-I Figure 11.--Cluster of nearest neighbors.



whereaAisasoutionof/ENR_Aexp(-etARi) + MR_Aexp - etA + _ R2

w w

m= 0 m= 2 m= 4 = NaAr_a exp (-- _Arl ) + NAnr_Aexp[- (Ol A + ABA)rl]
B AB A

+ MAAr_'A exp -- otA + r2

__ + MAsr_A exp -- (OtA+ ABA+ -_A_r2 (25)
for

m=l m=3

AB3 A3B _2 V_-
(L12) (L12) R I = TaA R 2 = aA rI = --r2 r2 = r (26)

Figure 12.--Ordered fcc, AI;_Bm_4 alloy structures.

wheresA= +1 ifaA<0, SA=--I ifaA>0, andN= 12

To compute AE,,,(r) using the method described in previous (for fcc structures) and M = 6 are the number of nearest andnext-nearest neighbors, respectively.
sections, let us consider a compound AraB4_m, where the A similar expression to equation (24) is found for the
elementary structure contains Na atoms of type A and NB of chemical energy of the B atoms just by exchanging A .-. B
type B, arranged in such a way that each one of the A atoms

inequations (24) to (26). It is clear then that the excess energy
has NaA (M_) (next) nearest neighbors of type A and NAB (eq. (21)) is just
(MAn)(next) nearest neighbors of type B. The B atoms have,
each, NB8(M88) (next) nearest neighbors of type B and NSA
(MBA)(next) nearest neighbors of type A. The strain energy AE,,,(r) = me_m)(r) + (4 - m)e_m)(r) (27)
for each A atom is

with
A

• r -- ae
esA(r) = ETA[1-- (1 + a_a) exp (--asA)] for asA--

1 e,}m)(r) = esA(r)+ ecA(r;m) (28)

(22) and

and for each B atom is e_m)(r) = esS(r) + e_(r;m) (29)

r - a_ As noted before, we will determine the values of AA8and Asa
* + =__

esB(r) = Eft[1 - (1 + asn)exp (-a_B)] for a_8 l so that our final results exactly reproduce the experimental
heats of solution, which should be computedfor the disordered
alloys A_BI__. An easy way of obtaining the excess energy

(23) expressions for the disordered structures A_BI__ from those
for the ordered ones is by following the prescription of

The chemical energy for each A atom is
Connolly and Williams (ref. 5), which takes advantage of the
cluster expansion of Sanchez and de Fontaine (ref. 6). In this
framework, the excess energy AEm(r) is written in terms of

e,A.(r;m) = sAE_[I --(1 + aA) exp (--a_)] exp (--a_A) many-body interaction potentials _'n(r):

A

. a,4- a_ (24) AEm(r) = _ tJn(r)_nm (30)for aa --



TABLE I.--MULTISITE CORRELATION FUNCTIONS where
FOR FCC STRUCTURES

4 (3Formula Structure Multisitecorrelationfunction Cm(X) = E (1 -- 2x)"[[-ll,,m = 4 xm (1 -- X) 4-m
GO _l _2 _3 _4 n =0 _k'm"]

A fcc l l l l I (35)
A3B LI 2 I t/2 0 -V2 -l
(AB) 2 LI 0 l 0 - _,5 0 1

AB_ LI 2 1 _ I,_ 0 I_ - l

B " fcc 1 -I l -1 l The heat of formation of the ordered structures AEm(rm)
is defined as the minimum value of the excess energy AEm(r)
(eq. (27)), which occurs for r = rm, and the heat of formation

where _ are multisite correlation functions defined on an n th of the disordered alloys AEo(rx,x) is defined as the minimum
order cluster, given by value of AED(r,x) (eq. (32)), which occurs for r = rx.

For a given pair of values (AAB,ASA)one can evaluate the
heat of formation of the disordered alloys for any arbitrary

=l E trPl..... ap,, (31) concentration x and then comparethe predicted value of the
N,, [p_] derivatives at x = 0 and 1 with the experimental values for

the heats of solution (See ref. 7 and eqs. (19) and (20)). This
where o is a spin-like variable which takes the values + 1 or evaluation is, in principle, feasible but obviously impractical.
- 1 when the lattice sitep is occupied by an A or a B atom. Computingsome selectedheats of formation for some specific
The sum is over all nth-order (n = 0..... 4) clusters of a given concentrationsis clearlydesirable. One choice of these selected
type in the lattice, and N, is the total number of such clusters, concentrations is the set (x = 0, x = _A, x = _,5,x = 3A,
For fcc structures, the _'s are those shown in table I. x = 1). We then interpolate the intermediate values with a

Inverting equation (30), we obtain the followingexpression polynomial
for the many-body potentials:

P(x) = ax 4 -!--bx 3 + CX2 "t- dx -I- e (36)
4

v,(r) = E AE'"(r)[_-I] ..... (32)
m=0 so that

with P(O) = P(1) = 0

l 4 6 4 1 P(1/4) = AED(rj/4; x = 1/4) = y_
(37)

4 8 0 -8 -4 P(1/2) = AEo(rl/2; x = 1/2) = Y2

_j-i = __l 6 0 - 12 0 6 (33) P(3/4) = AED(r3/4; X = 3/4) = Y3"'" 16
4 --8 0 8 --4

Solving this system of linear equations we obtain the
1 -4 6 -4 1 coefficients:

The excess energy of completely disordered alloys is 256

estimated by a = 64y2 _ (Yl + Y3)

4 32

AED(r'x) = E (1 - 2x)"v,,(r) b = -- (9yl - 12y2+ 7y3)3
n=O

4 4 16( )= E (1-2x)" E AE,,,(r)[_ -I] ..... c -- -13yl + -7y3
n=O m=O 3 -_- YZ

4

(9 )= E Cm(X)AEm(r) (34) d=--16 3y_ - Y2+
m=0 3 _ Y3

10



Finally, the heats of solution (eqs. (19) and (20)), in terms TABLEIII.--PERTURBATIVEPARAMETERSOBTAINED
of the coefficients of this polynomial, become BY FITTINGTOEXPERIMENTALVALUES

FOR HEATS OF SOLUTIONa

Ena = P'(0) = d A B Perturbativeparameters. Heatsof solution,
- _ eV/atom

EAts= - P'(1)= 16(_ y_-_y2+ Y3) (39) nAB ABA EBA EAB
Cu Ag -0.0321 -0.0394 0.39 0.25
Ag Au -.0311 -.0220 -. 19 -. 16

The parameters/x,48and zaB,4are varied until equations (39) Cu Au -.0588 -.05095 -.19 -.126

are exactly satisfied. By determining the final values of the Ni Cu .02395 -.0131 .09 .03

perturbative parameters AAB and ABAin this fashion, one AI Cu -.0526 -.0626 -.20 -.35
automaticallydetermines, by recourse toequations(30) to (35), Al Ag .0475 -.0499 .141 -.166AI Au -.0501 -.0853 -.80 - 1.26

the heats of formation of all the intermediate random alloys Ag Pd -.0431 -.02033 -.289 -.108
for arbitrary values of the concentration. This determination Au Pd -.0439 -.0348 -.355 -.195

enables us to obtain the bulk properties of all the possible Cu Pd -.04205 -.04795 -.436 -.392
alloys. The values of the relevant ECT parameters of some Cu Pt -.0568 -.0444 -.532 -.299
fcc metals, as well as the results obtained with our formalism Ni Pd -.0401 -.04665 .057 -.088

Ni Pt -.0603 -.0529 -.282 - .330
for the possible alloys of these elements, are discussed in the
next section, asee ref. 7.

Results Table III gives the values of the parameters An8and ABA
that one obtains when applying the formalism described in the

We applied the formalism to several binary alloys of Ni, previous section. As predicted by equations (39), with these
Cu, AI, Au, Ag, Pd, and Pt. As with previous calculations values of A,48and ASA, the heats of solution are exactly
(ref. 8), in this first application we adopted the approximation reproduced, as defined by equations (19) and (20). Note that
that, below the melting point, the alloying energy is although the formal definitions of equations (19) and (20) are
independent of temperature. In later efforts, we will extend exact, the estimatesfrom experimentare not. They are obtained,
our formalism to include temperature effects, as well as local as others have done, from a linear approximation to the slope
relaxation effects which, for simplicity, were ignored in the at the minimum concentration available, which are often too
present calculations. Local relaxation effects are, however, high to be accurate. Our procedure allows a method of
important, especially when the atomic sizes of the constituents improvingon this estimate. Thiswill be treated in a later work.
differ greatly (ref. 8). The excess energy curves for ordered and disordered alloys

Before applying our formalism to defect structures, local (AEm(r) and AED(r,x), respectively) can be written as (see
relaxation should be incorporated, although in the present eq. (21)):
report, it would just translate into a slightly different set of
values of the perturbative parameters AA8and ABAfrom the
ones reported here. For completeness, table II shows the ECT AEm(r) = Em(r) + A,,'_
parameters for the pure metals used in this calculation.

AED(r,x ) = Ex(r ) + A_ (40)

TABLE II.--EXPERIMENTAL INPUT AND COMPUTED CONSTANTS
with

Element p Screening ct, Electronic Experimental Equilibrium

length ,_,-' screening cohesive lattice _ m (4)I length, energy, constant, Am = _- EcA+ 1 ---- E_ (41)(a) X E a

AI 4 0.336 2.105 0.944 3.34 4.04
Cu 6 0.272 2.935 .765 3.50 3.61 where Era(r) (Ex(r)) is the binding energy curve for the
Ag 8 0.269 3.337 .756 2.96 4.08 ordered (disordered) compound AraB4_ m (AxBl_x). These

Au I0 0.236 4.339 .663 3.78 4.07 functions can be accurately described with analytical forms as
Ni 6 0.270 3.015 .759 4.44 3.51

Pd 8 0.237 3.612 .666 3.94 3.89 * -a"
Pt 10 0.237 4.535 .666 5.85 3.92 Era(r) = -- Ec'(1 + am)e m

_s_c_q,,4, Ex(r ) = - EX(1 + a*x)e-a_ (42)
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TABLE IV.--ECT RESULTS FOR ORDERED AND DISORDERED ALLOYS

Formula Ordered alloys. A,,,B4_,, Disordered alloys, AxBI-x Experiment values Predictec
ordering

Lattice Heat Energy Cohesive Lattice Heat of Energy Cohesive Heat of Cohesive energy.
parameter, formation reference_ energy, parameter, formation, reference energy, formation energy, Eord,

r,,,, AE,,,(r,,,), A,,_, E','.', r_, AED(t_,x), A,,_, Er,.(exp), AHcxp, Er eV
•_, eV eV eV _, eV eV eV eV eV

CuAu3 4.003 -0.0588 3.710 3.769 4.008 -0.0217 3.710 3.732 -0.0311 3.741 0.0371
(CuAu)2 3.909 -.0818 3.640 3.722 3.918 -.0308 3.640 3.671 -.0539 3.693 0.051
Cu3Au 3.771 -.1646 3.570 3.735 3.798 -.0277 3.570 3.598 -.0452 3.615 .1369

CuAg3 3.992 0.0366 3.095 3.058 3.996 0.0537 3.095 3.041 0.0171
(CuAg)2 3.885 .0565 3.230 3.173 3.890 0.0803 3.230 3.150 .0238
Cu2Ag 3.756 .0187 3.365 3.346 3.765 .0668 3.365 3.298 .0488

AICu3 3.688 -0.1083 3.460 3.568 3.698 -0.0520 3.460 3.512 -0.0728 3.533 0.0563
(AICu)2 3.788 -.1012 3.420 3.521 3.799 -.0569 3.420 3.477 -.0938 3.514 .0443
AI3Cu 3.897 -.0999 3.380 3.480 3.915 -.0378 3.380 3.418 -.0521 3.432 .0621

NiCu3 3.590 0.0052 3.734 3.729 3.592 0.0083 3.734 3.726 0.0093 3.725 0.0031
(NiCu)2 3.568 .0171 3.967 3.950 3.568 .0147 3.967 3.952 .0184 3.949 -.0024
Ni3Cu 3.548 .0200 4.201 4.181 3.548 .0140 4.201 4.187 .0179 4.183 -.006

NiPt3 3.857 -0.1129 5.496 5.609 3.863 -0.0587 5.496 5.555 -0.0641 5.560 0.0542
(NiPt)2 3.782 -. 1390 5.142 5.281 3.790 -.0752 5.142 5.217 -.0960 5.238 .0638
Ni3Pt 3.669 -.1958 4.789 4.985 3.689 -.0545 4.789 4.843 -.0695 4.858 .1413

NiPd3 3.817 -0.0493 4.064 4.113 3.822 -0.0088 4.064 4.073 -0.0123 4.076 0.0405
(NiPd)2 3.738 -.0411 4.187 4.228 3.744 -.0022 4.187 4.189 -.0055 4.192 .0389
Ni3Pd 3.639 -.0581 4.311 4.369 3.649 .0048 4.311 4.306 .0050 4.306 .0629

CuPt3 3.877 -0.0891 5.262 5.351 3.879 -0.0641 5.262 5.326 -_0.0723 5.334 0.025
(CuPt), 3.818 -.1502 4.675 4.825 3.825 -.0986 4.675 4.774 -.1149 4.790 .0516
Cu3Pt 3.729 -. 1970 4.087 4.284 3.747 -.0859 4.087 4.173 -.0977 4.185 .1111

CuPd3 3.830 -0.1040 3.830 3.934 3.837 -0.0687 3.830 3.899 -0.0818 3.912 0.0453
(CuPd)2 3.771 -.1306 3.720 3.851 3.777 -.0912 3.720 3.811 -.1109 3.831 .0394
Cu3Pd 3.693 -. 1387 3.610 3.749 3.706 -.0728 3.610 3.683 -.0926 3.703 .0659

AuPd3 3.933 -0.0597 3.900 3.960 3.935 -0.0429 3.900 3.943 -0.0476 3.948 0.0168
(AuPd)z 3.975 -.0966 3.860 3.957 3.979 -.0667 3.860 3.927 -.0807 3.941 .0299
Au3Pd 4.018 -. 1061 3.820 3.926 4.026 -.0579 3.820 3.878 -.0746 3.895 .0482

AgPd3 3.921 -0.0330 3.695 3.728 3.921 -0.0303 3.695 3.725 -0.0273 3.722 0.0030
(AgPd)2 3.954 -.0761 3.450 3.526 3.959 -.0523 3.450 3.502 -.0520 3.502 .0238
Ag3Pd 4.000 -.0956 3.205 3.301 4.011 -.0471 3.205 3.252 -.0524 3.257 .0485

i

IAIAu3 4.075 -0.3155 3.463 3.778 4.075 -0.2068 3.463 3.670 -0.2723 3.735 0.1087
(AIAu)2 4.070 -.3054 3.316 3.621 4.070 -.2434 3.316 3.559 -.3499 3.666 .0620
AI3Au 4.062 -.2006 3.286 3.487 4.062 -. 1636 3.286 3.450 -.2095 3.495 .037

AIAg3 4.072 -0.0420 3.055 3.097 4.077 -0.0160 3.055 3.071 0.0260
(AIAg)2 4.074 .0000 3.15 3.15 4.073 -.0018 3.150 3.152 -.0018
AI3Ag 4.073 .0342 3.245 3.21 I 4.067 .0127 3.245 3.232 -.0215

AgAu 4.079 -0.0401 3.535 3.575 4.079 -0.0307 3.535 3.566 -0.0341 3.569 0.0094
(AgAu) 4.081 -.0550 3.315 3.370 4.081 -.0425 3.315 3.357 -.0482 3.363 .0125
Ag3Au 4.083 -.0475 3.117 3.165 4.083 -.0335 3.117 3.150 - .0372 3.154 .0140
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where Finally, table IV includes the ordering energy, defined as

r(,,,) = AEj(G,x) AEm(r,,,) (45)
, r - rm , r -- rv _ord . --

am -- and a x --

lm Ix for x = m/4 and m = 0, 1, 2, 3, 4.
In figure 13 we show a particular case, the LIo structure

In the equations E_!'(E,.x) is thus the cohesive energy of the of the Ag-Pd alloy. This figure highlights the relative
ordered (disordered) alloy, and rm (rx) is the equilibrium contributions of the strain and chemical energies to the heat
lattice parameter. This result is in agreement with previous of formation z_E2(r). Figure 14 compares the experimental
attempts to represent the binding energy curves for alloys, values of the heat of formation (when available) with the
Moreover, equation (34) implies that predicted values obtained with our formalism. In most cases,

especially for those alloys where the lattice mismatch is not
large, the agreement is excellent. Good results are obtained

Ex(r) = _ c,,,(x)Em(r) (43) in general for all the cases studied, which include two liquids:
m AI-Cu and AI-Au. Figure 15compares the experimentalvalues

of the cohesive energies of the disordered compounds with
and the predictedvalues, both in reference to the values one would

obtain if Vegard's law (linear average of the pure metals
cohesive energies) were valid. In all cases the agreement is

A._= ]_ c,,,(x)ZX,,_ (44) excellent, even in those situations where there is noticeable
m departure from Vegard's law. As a final test, we compare the

bulk modulus predictedby ECT with experiment and the first-
so that only the knowledgeof E_!',am, 1,,,,and za,,7 is required, principles calculations of Wei et al. (ref. 9) for the ordered
as the quantities Eb_, G, /._, and A._ can be obtained from compounds of Cu and Au. The results are given in table V.
equations (43) and (44). These results are listed in table IV This is a severe test of the predictions since the bulk modulus
for some of the binary alloys studied. Table IV also gives the is related to the secondderivative of the binding energy curve.
predicted values for the heats of formation of ordered and Again, the agreement is excellent and comparable to the first-
disordered structures, as well as the experimental values, principles results.

4

/F Estrain(r)
3 \

> _ aE(r)

tLI

EChem(r)

° ,,pT2-1 I I I
3 4 5 6 7 8 9 10

Lattice parameter, r

Figure 13.--Excess energy AE(r) of ordered compound (AgPd)2 as function of lattice parameter r also showing the two contributions to excess energy
E_train(r)and Echcm(r).
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Figure 14.--Heat of formation as function of concentration
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Figure 14.--Concluded.
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Figure 15.--Cohesive energy as function of concentration for various alloys.
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TABLE V.--COMPARISON OF EXPERIMENTAL RESULTS, ECT
PREDICTIONS, AND FIRST-PRINCIPLES

CALCULATIONS (FPPL)

Formula Type of result Lattice Screening Cohesive Bulk
parameter, length, energy, modulus

a, 1, Ec B,
,_ _, eV GPa

Cu Experiment 3.615 0.276 3.49 138
ECT predictions 3.615 .272 3.50 142
FPPL 3.577 .302 4.33 144

Cu3Au Experiment 3.743 0.267 3.64 148
ECT predictions 3.771 .255 3.735 165
FPPL 3.738 .301 4.37 140

(CuAu)2 Experiment 3.876 0.254 3.74 163
ECT predictions 3.909 .246 3.722 171
FPPL 3.887 .275 4.40 162

CuAu3 Experiment 3,982 0.247 3.79 170
ECT predictions 4,003 .240 3.769 177
FPPL 3,991 .248 4.37 194

Au Experiment 4,078 0.244 3.81 171
ECT predictions 4,078 .236 3.78 181
FPPL "4,106 .253 4.35 180

Discussion .6- Experiment
ECTresults

Theresultsdescribedintheprevioussectionshowhowour - Firstprinciples
calculations compare with the body of experimental data \ calculation
available, from which we extractedthe information(i.e., heats _ .4 --

of solution) needed to determine the parameters included in _ ",
our theory. =o ,.

In what follows, we will show how our results compare with _ \
some recent theoretical studies which include first-principles _
totalenergycalculations,basedon solvingthe three-dimensional, i5 .2 -- "
nearest-neighbor, fcc Ising model with volume-dependent ",Q
interactionenergies, local densityapproximation(LDA) calcu- "
lations, and embedded atom method (EAM) results (refs, 9
to 11). 0 [

3.6 3.8 4.0 4.2

Comparison with First-Principles Calculations Latticeparameter.,/_

Figure 16 shows the first of these comparisons for the Figure 16.--Binding energy as function of lattice parameter for gold (Au).
particular case of Cu-Au alloys. All three sets of results for (See ref. 9.)
the binding energy curves of the ordered compounds AmB4_m
(i.e., experimental values (EXP, ref. 7), first-principles
(FPPL, ref. 9), and ECT) can be represented by simple
Rydberg functions of the form

• -,," where q = (3/167r)t/3for fcc only. Table V gives the valuesE,,,(r) = - Ec"(l + am)e ", (46)
of E_.",rm, and lm for all three sets of results (EXP, FPPL,

with and ECT). For clarity, we first show the binding energy curves
for gold in figure 16 as obtained with the parameters of
table V. Figure 17 expands on these results showing the

" q (r - r,,,) corresponding results for Cu, Au, and the three intermediate
a,,, = _m ordered compounds.
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Figure 17.--Binding energy as function of lattice parameter for ordered

compounds CumAu4_ m. Figure I9.--Deviation fromVegard's law for latticeparametersof Pd-Nialloys
as function of concentration.

Comparison with Other Semiempirical Methods.
For comparison, figure 18shows the ECT values, the EAM

In a recent study (ref. I1), the embedded atom method results, the experimental values, and the predictions of
(EAM) was applied to the calculation of formation enthalpies Miedema's empirical model for the formation enthalpy of the
and lattice parameters of Pd-Ni alloys. The embedding func- Pd-Ni alloys as a function of composition. Figure 19 shows
tions used were those determined for the pure metals, and the the corresponding results for the lattice parameters.
original EAM prescription was used. The comparison with
experimental results is disappointing. Since then, EAM has Deeoupling the Strain and the Chemical Energy

been reformulated for alloys in order to improve the accuracy As pointed out before, our formalism is based on the
of its predictions, assumptionthat the structural changesin alloyformation (strain

• Experiment energy) and the composition changes (chemical energy) can
ECTresults be treated separately.This is later corrected (in an approximate

.02 _ EAMresults
Miedma'sempiricalmodel way) by introducing a geometrical factor in the expression for

the chemical energy (see eq. (9)). It was later argued that in

0u spite of the fact that this term is strictly necessary in order
to ensurethecorrectasymptoticbehaviorof the formation

oE -.02 enthalpies, it is not fundamentally important for ;.hestudy of
"_ / the alloy properties near equilibrium.

-.04 -_ / Not including this term in the chemical energy would
:r" _ / effectively decouple the chemical and the strain energies<1

" / leading to an approximation to what is already an approximate
g -.06 --\ / method. However, we will show below that thisapproximation

I / leads to an interesting result concerning general properties ofo -08- \ /"6 alloys, which in most cases can make a fullcalculationof alloy/
\ / structure with any available method, unnecessary.

= -.10 -- _ _ If the geometry factor in the expression for the chemical
\ _ energy is left out (e-a; in eq. (9)), the chemical energy is

-.12 -- _'T'" "_j/ dependentonly on chemicalcomposition and the strain energy
carries all the information about the atomic distribution and

-.14 [ ] [ [ composition in the alloy. The values of the parameters Ann0 .2 .4 .6 .8 1.0
and AeAobtained are then slightly different from the onesPd concentration
quoted earlier, as shown in table VI, where the two sets of

Figure l8.--HeatofformationasfunctionofconcentrationforPd-Nialloys. A'S are listed. The ensuing results for the enthalpies of
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TABLEVI.--COMPARISONOF COUPLED formation are still good and in some cases indistinguishable
AND UNCOUPLED VALUES OF THE from the previous results. Figure 20 displays, for comparison,

PERTURBATIVE PARAMETERS the original results, the new, approximate results, and the

A A AAB ABA corresponding experimentalvalues for some of the compounds
studied.

Uncoupled Coupled Uncoupled Coupled As before, the results obtained for the binding energy curves
of the disordered alloys, as well as the corresponding ones

Cu Ag -0.0380 -0.0321 -0.0289 -0.0394 for the ordered alloys, canbe accurately representedby simple
Ag Au -.0311 - .0311 -.0220 - .0220
Cu Au -.0711 -.0588 -.0404 -.05095 analytical expressions:
Ni Cu .0260 .02395 -.0130 -.0131

, _." =. • q
AI Cu -.0415 -.0526 -.0775 -.0626 AEm(r ) = -- E_"(I + a,,,)e ,,, + A,,,, a,,, = (r - r,,,)
AI Ag .0487 .0475 -.0492 - .0499 I--
AI Au -.0501 -.0501 -.0853 -.0863

Ag Pd -.0381 -.0431 -.0246 -.02033 (47)Au Pd -.0385 -.0439 -.0411 -.0348
Cu Pd -.0488 -.04205 -.0413 -.04795
Cu Pt - .0653 - .0568 - .0367 - .0444

, . =. • q
.Ni Pd -.0491 -.0401 -.0376 -.04665 AED(r,x ) = --E[(I +aOe-a.,+Ax, ax=- (r--rx)
Ni Pt - .0719 - .0603 - .0431 - .0529 (t

(48)

.2 ,.- .2
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ECT result
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Figure 20.--Comparisonof approximateECT resultsand resultsshownin figure 14..
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Figure 20.--Concluded.

and
where the quantities E,'.",r,,, 1,,,,and A,,_,as well as E_._, r,.,
/.,.,and A._',are also different from the ones one obtains when
applying the original formalism. However, in this case, the 4
sets of values (E_!',r,,,.1,,)and (Ei'.,r_, /x) are the same when El.( 1 + a._)exp (-a.7) = _ c,,,(x)E_!'(1 + a,_,)exp (-a,,)
x = m/4. This means that, apart from the reference energies m=0

A,,a', and A_, the binding energy curves for the disordered and (50)
ordered alloysof the same concentration coincideexactly. The
only difference arises in the reference energy term.

If we insert equations (47) and (48) into equation (34), we These results were also valid before, but the fact that the
find that two separate conditions are then satisfied: sets of values (E_!',r,,,, 1,,,)and (Ei_,r_, /x)are identical when

x = m/4 we may write equation (50) in the following fashion,
4 reflecting the equivalence of the binding energy curves for

/x._= _ c,,,(x)A,,'_ (49) specific concentrations (i.e., E_(r) = E,,(r) for x = m/4):
lit = 0
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4 T,BLEVllFtINOE,,(r) = _ c,,, = Era(r); n=0 ..... 4 (51) PARAMETERSOFEQUATION(45)
m=0 [Ref. 10.l

Equation (51) is just a linear system of equations for Ei (r), System p q r

which yields the result
Au 8.584 l 1.677 2.155

CuAu3 8.217 ll.013 1.932

m     u, 7 7704,0Era(r) = 1 - Eo(r) q- --_g4(r) (52) Cu3gu 7.474 9.749 1.586Cu 7.055 9.033 1.410
Ag 8.075 10.444 1.513

This result, which is only valid within the context of this CuAg3 7.819 10.076 1.502(CuAg)2 7.588 9.787 1.519
approximation (when the strain and chemical energy are Cu3Ag 7.322 9.406 1.469
"decoupled") states that Vegard's law is valid for the binding . AgAu 3 8.447 11.347 1.960
energy curve and not just for the individual parameters in thena. (AgAu)2 8.331 11.073 1.815

By virtue of equation (34), we can extend this result to the Ag 3 Au 8.207 10.769 1.662

disordered alloys, obtaining

Eo(r,x) = (l - x)Eo(r) + xE4(r) (53)

With these results, certain alloy properties can then be obtained we note that in order for this rule to hold true, equation (51),

without a full many-atom calculation. One would expect these together with equations (49) and (50), must be satisfied for
predictions to be valid according to the relevance of the any arbitrary choice of the parameterization of the binding
coupling between the chemical and strain energies. Figure 20 energy dependence on the lattice parameter. Introducing
shows that, in some cases, this is an excellent approximation, equation (54) into equation (34), we obtain the following
The prescription for its use, therefore, is to use the UBER expression for the excess energy of the corresponding

to generate the binding energy curves for the pure materials disordered compounds:
and then to build the alloy curve as prescribed above.

Note that this approximation is limited, not only by the p._,, Qo_

underlying assumptions, but also by its inability (by definition) AE°(r'x) - r2'' r" + Rx (55)
to reproduce the correct asymptotic behavior of the excess
energy. The range of validity is thus restricted to the "local"
regime, that is, when the distances involved are comparable where
to those in the pure metals near equilibrium.

4

Comparison with Other First-Principles Calculation--Test P_" = _ Cm(x )p,,2''
of the Sum Rule for Binding Energy Curves m=0

4

In a recent calculation Terakura et al. (ref. 10) analyzed the Q_ = _ c,,,(x)ql_,, (56)
phase stability of several binary alloy systems composed of tr/_0

Ni, Pd, or Pt as one element and Cu, Ag, or Au as the other. 4

From their LDA band calculations they found that their pre- R, = _ Cm(X)rm
dictions for the excess energy AEm(r) admitted a simple " m=0
parameterization of the form

If the first-principles results behave according to equation
(52), then a direct consequence of the sum rule (eq. (34)),

(?)2, (_),, namely,
AE,,,(r) = _ _2' rm (54)

AEo(r,x=4)- AEm(r) m=0 ..... 4 (57)where the parameters pro, qm and rm are those listed in table
VII. They also found that a good fit was obtained for n = 3.5.

The objective in this section is to show that even first- would also have to be satisfied. In terms of the coefficients
principles results, to a certain extent, follow the general sum used in Terakura's work, this condition can be written as a
rule derived in the previous section (eq. (52)). To that effect, set of simultaneous requirements on these coefficients:

22



TABLE VIII.--COMPARISON OF THE SETS propertiesof the alloysfor all rangesof compositions,compare
OF PARAMETERS(P,Q,R)AND (p,q,r) favorable with other approaches. By construction, the method

ASDEFINEDBYEQUATION(57) allows for a simple treatment of defects in alloys as well as
extensions to include temperature effects, making this new

System Pip Q/q R/r
equivalent crystal theory of alloys a versatile tool for several

AgAu3 8.46/8.45 11.37/11.35 1.98/1.96 applicationsof interest.
(AgAu)2 8.33/8.33 11.07/11.07 1.82/1.82
Ag3Au 8.21/8.21 10.77/10.77 1.66/1.66

Lewis Research Center
CuAg3 7.84/7.82 10.11/10.08 1.51/1.50
(CuAg)2 7.60/7.59 9.77/9.79 1.50/1.52 National Aeronautics and Space Administration
Cu3Ag 7.34/7.32 9.42/9.41 1.46/1.47 Cleveland, Ohio, April 4, 1991

CuAu3 8.26/8.22 11.07/11.01 1.95/1.93

(CuAu)2 7.91/7.88 10.45/I0.45 1.77/1.79 References
Cu3Au 7.52/7.47 9.78/9.75 1.59/1.59

1. Smith, J.R.; and Banerjea, A.: A New Approach to Calculation of Total
Energies of SolidsWith Defects--Surface Energy Anisotropies. Phys.p2.

I/4 = Pl Q7/4 = ql RI/4 = rl Rev. Lett., vol. 59, no..21, 1987, pp. 2451-2454.
2. Smith, J.R.; and Banerjea, A.: Equivalent-Crystal Theory of Oscillatory

p2n SurfaceRelaxation. Phys. Rev., B, vol. 37, no. 17, 1988,pp. 411-414.1/2 =P2 Q_/2 = q2 RI/2 = r2
3. Smith, J.R., et al.: Avalanche in Adhesion. Phys. Rev. Lett., vol. 63,

p2n no. 12, 1989, pp. 1269-1272.
3/4 = P3 Qg/4 = q3 R3/4 = r3 4. Smith, J.R., et al.: EquivalentCrystal Theoryof Metaland Semiconductor

Defect. To be published in Phys. Rev., B, 1991.
The results are shown in table VIII. Although the comparison 5. Connolly, J.W.D.; and Williams, A.R.: Density Functional Theory

is not exact (i.e., the (P,Q,R) and (p,q,r) coefficients are not Appliedto Phase-Transformations in Transition-MetalAIIo2;'s.Phys.
exactly the same), the agreement is surprisinglygood, making Rev.,B, vol. 27, no.8, 1983,pp. 5169-5172.6. O'Keeffe, M.; and Navrotsky, A.: Structure and Bonding in Crystals.
the use of equation (52) a viable alternative to Vegards's law Academic Press,1981,Vol.2, p. I1.

for obtaining a more accurate and complete calculation of 7 Hultgren,R.R: Selected ValuesofThermodynamicPropertiesof Metals

general alloy properties, and Alloys. Wiley, 1963.
8 Ackland, G.J.; and Vitek, V.: Many-Body Potentials and Atomic-Scale

Relaxationsin Nobel-Metal Alloys. Phys. Rev. B, vol. 41, no. 15, 1990,
pp. 10324-10333.

Conclusion 9 Wei, S.-H., et al.: First-Principles Calculations of the Phase-Diagrams
of Noble-Metals: Cu-Au, Cu-Ag, and Ag-Au. Phys. Rev., B, vol. 36,

The equivalent crystal theory, originally developed for the no. 8, 1987,pp.4163-4185.
study of pure metals and semiconductors, has been extended 10. Terakura, K., et al.: Electronic Theory of the Alloy Phase-Stability of :

to include binary alloys. A simple formalism, inspired by the Cu-Ag, Cu-Au, and Ag-Au Systems. Phys. Rev., B, vol. 35, no. 5,

conceptofequivalentcrystals,wasderivedand,withminimum 1987,pp. 2169-2173.
11. Maarleveld, P.R., et al: Application of the Embedded Atom Method to

experimentalinput, applied toa large number of metallicalloys theCalculationofFormationEnthalpies andLatticeParametersofPd-
ofCu, Ni, Pd, Pt, Au, AI, and Ag. The results, which in all Ni Alloys. Physica, B, vol. 142, 1986, pp. 328-331.
cases closely follow the experimental measurementsof certain 12. Kittel, C.: Introduction to Solid State Physics. 4th ed. Wiley, 1971.
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